< 近代など(20世紀~)■ | ||||||||||||||||||||||||||||||||
近代など Ⅱ(20世紀~) |
||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
Ⅱ 数学系のものなど iv. 『フラットランド』の系譜など 「ロマン主義、近代など(18世紀末~19世紀)」のページの「ix. 個々の著述家など Ⅴ」の項の「アボット(1838-1926)とヒントン(1853-1907)」のところでも触れましたが、アボットの『フラットランド』(1884)はいろいろなところで言及されるだけでなく、続篇の類も一つならず生みだしました; ブルガー、石崎阿沙子訳、『多次元★球面国 ふくらんだ国のファンタジー』、東京図書、1992 原著は Dionys Burger, Sphereland. A Fantasy about Curved Spaces and an Expanding Universe, 1965 オランダ語原本は1957年刊。 序 - 球面国への招待(森敦)// フラットランドの概略// 球面国;まっすぐな世界/合同と対称/ 232ページ。 後出のデュードニー『プラニバース』(1989)によれば、 「アボットの世界とヒントンの世界を和解させ」 たもの(p.310)。 イアン・スチュアート、青木薫訳、『2次元より平らな世界 ヴィッキー・ライン嬢の幾何学世界遍歴』、早川書房、2003 原著は Ian Stewert, Flatterland. Like Flatland, Only More So, 2001 まえがき-フラットランドからフラッターランドへ/A・スクエア文書の発見 謎の3次元世界/ヴィクトリアの日記 暗号解読と魔人の召還/異次元からの訪問者 446ページ。 「アボット(1838-1926)とヒントン(1853-1907)」で挙げた エドウィン・アボット・アボット、イアン・スチュアート注釈、『フラットランド 多次元の冒険』、2009 の「はじめに」や詳細な注釈も参照 また、同じくフィクション仕立てのものに A.K.デュードニー、野崎昭弘監訳、野崎昌弘・市川洋介訳、『プラニバース 二次元生物との遭遇』、工作舎、1989 原著は Alexander Keewatin Dewdney, The Planiverse. Computer Contact with a Two-Dimensional World, 1984 2Dワールドとの交信/円形惑星アルデ/海辺の家にて/大海フィディブ・ハール/首都イズ・フェルブルトへの道/地下都市での滞在/哲学者との出出会い/ピュニズラ研究所/芸術都市セマ・ルーブルト/ダール・ラダムの高みに/古代神殿での体験/高次元への旅// 付録 プラニバースの科学技術// 著者あとがき 2次元宇宙の創造者たち/監訳者あとがき 2次元での「可能性」と「不可能性」(野崎昭弘)// プラニバース用語集/プラニバース研究 1~19など、 326ページ。 クリフォード・A・ピックオーバー、河合宏樹訳、『ハイパースペース・サーフィン 高次元宇宙を理解するための6つのやさしいレッスン』(Newton Science Series)、ニュートンプレス、2000 原著は Clifford A. Pickover, Surfing through Hyperspace. Understanding Higher Universes in Six Easy Lessons, 1999 序論/自由度/高次元の神/サタンおよび直交する諸世界/超球とテセラクト(4次元立方体)/鏡の世界/ハイパースペースの神々/結論// 付録;頭を錯乱させる4次元パズル/SFにおける高次元/バンチョフ・クラインの壺/4元数/4次元迷路/コンピューター・マニアのための雑多な寄せ集め/4次元生物の進化/さらなる思考に挑戦する問題/ハイパースペースの文献// 補遺など、 384ページ。 アボットやヒントンへの影響源かもしれない先駆者について、本頁下掲「viii. 無限、その他」で挙げた アンリ・ポアンカレ、南條郁子訳、『科学と仮説』(ちくま学芸文庫 ホ 23-1)、筑摩書房、2022 へのメモも参照。 |
||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
v. ルーディ・ラッカー(1946- )など 100パーセントがフィクション仕様というわけではありませんが、内に『フラットランド』の続篇を含むのが(二つ下の『4次元の冒険』も同様); ルドルフ・ラッカー、金子務訳、『かくれた世界 幾何学・4次元・相対性』、白揚社、1981 原著は Rudolf v. B. Rucker, Geometry, Relativity and the Fourth Dimesion. 1977 第4次元 タマコ姫との不運な出会い/非ユークリッド幾何学 ギロチン首抜け事件の奇妙な顛末/曲がった空間 イキイキフレーク博士は世界の涯を見たのか?/より高い次元としての時間 君がスーパーマンになる日/特殊相対性理論 宇宙船と納屋での困った証言/タイム・トラヴェル ある反惑星の反人間の一生/時空のかたち クネルセン国のブラックホール/結論など、 256ページ。
ラディー・ラッカー、好田順治訳、『無限と心 無限の科学と哲学』、現代数学社、1986 原著は Rudy von B. Rucker, Infinity and the Mind, 1982 序文// 無限;無限小史/物理的無限(時間的無限/空間的無限/小ささにおける無限/結論)/心の世界における無限/関連性/パズルと逆説// 数のすべて;ピュタゴラスからカントルまで/超限数(オメガーからイプシロンゼロまで/アレフ達)/無限小と超現実数/高次の物理的無限/パズルと逆説// 名づけられないもの;ベリーの逆説(数を名づけること/名前を理解すること)/ランダム実数(構成的実数/バベルの図書館/リシャールの逆説/世界をコードづける)/真理とは何か?/結論/パズルと逆説// ロボットと魂;ゲーデルの不完全性定理/ゲーデルとの会話/ロボットの意識に向かって(形式系と機械/嘘つきの逆説と数学の非機械化可能性/進化過程を通じての人工的知能/ロボットの意識)/機械論を越えて?/パズルと逆説// 一者と多者;古典的一/多問題/集合と何か?/集合論の宇宙(純粋集合と物理的宇宙/純クラスと形而上学的絶対者)/共有的啓発(論理と集合論における一/多/神秘主義と合理主義/悟り)/パズルと逆説// エクスカーションⅠ 超限基数;すべての順序数の集まり(On)とアレフ-ワン/基数/連続体/大きい基数// エクスカーションⅡ ゲーデルの不完全性定理;形式系/自己言及/ゲーデルの証明/人間-機械同値についての専門的注意// 訳者あとがき/パズルと逆説解答/参考文献など、 360ページ。
ルディ・ラッカー、挿絵:デーヴィッド・ポヴィレイティス、金子務監訳、竹沢攻一訳、『4次元の冒険 幾何学・宇宙・想像力』、工作舎、1989 原著は Rudy Rucker, The Fourth Dimension. A Guided Tour of the Higher Universe, 1984 序(マーティン・ガードナー)// 4次元;新しい方向/フラットランド/過ぎ去った世界/鏡の国/幽霊は超空間からやって来る// 空間;世界を作っているもの/空間の形/別世界への魔法の扉// 方法;時空日記/タイムトラベルとテレパシー/実在とは何か?など、 304ページ。
ルディ・ラッカー、金子務監訳、大槻有紀子・竹沢攻一・村松俊彦訳、『思考の道具箱 情報 数 空間 論理 無限 - 数学的リアリティの五つのレベル』、工作舎、1993 原著は Rudy Rucker, Mind Tools. The Five Levels of Mathematical Reality, 1987 序章 五つの思考形態;情報としての数学/数と空間/論理と無限/数学的概念の心理学的ルーツ/インフォメーションとコミュニケーション/観念の歴史旅行// 数;0と1/数と対数/数のパターン/数秘術・数あたま・群衆/心の計算者/数としての言葉/知識の限界// 空間;数学空間と現実空間/タイル・細胞・絵素・格子/代数曲線コレクション/揺れと渦巻/果てしない複雑さ/フラクタル/ヒルベルト空間におけるフラクタルな人生/ヒルベルト空間をめぐって// 論理;思考の法則/三段論法カタログ/記号論理学入門/論理空間の探検/ゲーデルの定理/チューリング・マシン登場/解決不能の問題集/真理の海// 無限と情報;無限の大きさ/情報と連続体問題/遠近法における無限小/アルゴリズムの複雑さ/不可解/ランタイム/すべてが情報// 監訳者あとがきなど、 402ページ。
なお、ラッカーの小説からすでに「ロマン主義、近代など(19世紀)」のページの「viii. エドガー・アラン・ポー(1809-1849)など」の項で『空洞地球』を挙げましたが、あわせて手元にあるものを並べておくと; ルーディ・ラッカー、大森望訳、『時空ドーナツ』(ハヤカワ文庫 SF ラ-3-9)、早川書房、1998 原著は Rudy Rucker, Spacetime Donuts, 1981
ルーディ・ラッカー、黒丸尚訳、『ホワイト・ライト』(ハヤカワ文庫 SF ラ-3-4)、早川書房、1992 原著は Rudy Rucker, White Light, 1980
ルーディ・ラッカー、黒丸尚訳、『ソフトウェア』(ハヤカワ文庫 SF ラ-3-1)、早川書房、1989 原著は Rudy Rucker, Software, 1982 ルーディ・ラッカー、大森望訳、『セックス・スフィア』(ハヤカワ文庫 SF ラ-3-5)、早川書房、1992 原著は Rudy Rucker, The Sex Sphere, 1983 エピグラフはヒントン「多次元」(1885)とアボット『フラットランド』からで、物語も後者を下敷きにしているとのこと(「訳者あとがき」、pp.325-326)。 R.ラッカー、黒丸尚訳、『時空の支配者』(新潮文庫 ラ-8-1)、新潮社、1987 原著は Rudy Rucker, Master of Space and Time, 1985
R.ラッカー、黒丸尚訳、『空を飛んだ少年』(新潮文庫 ラ-8-2)、新潮社、1987 原著は Rudy Rucker, Master of Space and Time, 1985 ルーディ・ラッカー、黒丸尚訳、『ウェットウェア』(ハヤカワ文庫 SF ラ-3-2)、早川書房、1989 原著は Rudy Rucker, Wetware, 1988 ルーディ・ラッカー、黒丸尚訳、『空洞地球』(ハヤカワ文庫 SF ラ-3-3)、早川書房、1991 原著は Rudy Rucker, The Hollow Earth, 1990 ルーディ・ラッカー、黒丸尚・他訳、『ラッカー奇想博覧会』(ハヤカワ文庫 SF ラ-3-7)、早川書房、1995 日本で編集された短編集。原著は 1980-1995 遠い目/57番目のフランツ・カフカ/パックマン/自分を食べた男/慣性/虚空の牙/第3インター記念碑/柔らかな死/宇宙紐だった男/宇宙の恍惚// [エッセイ]1990年日本の旅/クラゲが飛んだ日(ラッカー&ブルース・スターリング)/[エッセイ]日本のアーティフィシャル・ライフなど、 404ページ。 「遠い目」から1文をエピグラフとして引いたことがあります(p.27) →「両刃の斧の家、双頭のミノタウロス」、『今村哲』展図録 2000.6 <三重県立美術館のサイト ルーディ・ラッカー、大森望訳、『ハッカーと蟻』(ハヤカワ文庫 SF ラ-3-8)、早川書房、1996 原著は Rudy Rucker, The Hacker and the Ants, 1994 ルーディ・ラッカー、大森望訳、『フリーウェア』(ハヤカワ文庫 SF ラ-3-10)、早川書房、2002 原著は Rudy Rucker, Freeware, 1997 |
||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
vi. 次元など ルーディ・ラッカーからの続きで、まずは; 三浦朱門訳、『第4次元の小説 幻想数学短編集』(地球人ライブラリー 006)、小学館、1994 タキポンプ(エドワード・ペイジ・ミッチェル)/歪んだ家(ロバート・A・ハインライン)/メビウスという名の地下鉄(A.J.ドイッチュ)/数学のおまじない(H.ニアリング・Jr.)/最後の魔術師(ブルース・エリオット)/頑固な論理(ラッセル・マロニー)/悪魔とサイモン・フラッグ(アーサー・ポージス)// コラム(吉永良正)/あとがき(三浦朱門)/解説(森敦)/リスト・オブ・ブックスなど、 286ページ。 クリフトン・ファディマン編、FANTASIA mathematica, 1958 をもとにした1959年刊の訳本から、7編を選び、改訂・注釈を加えた新版(p.284)。 →こちら(「近代など(20世紀~) Ⅴ」の頁の「グレッグ・ベア」の項)でも触れました。 またハインラインの収録作に関して→そちら(同頁の「ハインライン」の項)も参照 もう一つ; アルジャノン・ブラックウッド、紀田順一郎・桂千穂訳、「四次元空間の 原著は Algernon Blackwood, “A Victim of Higher Space”, Day and Night Stories, 1917 邦訳は1976年刊本の文庫化 ブラックウッドについて→こちらも参照:「近代など(20世紀~) Ⅳ」の頁の「ブラックウッド」の項 本間龍雄、『位相空間への道 直観的トポロジーの世界』(ブルーバックス B168)、講談社、1971 序章/グラフの章/曲線の章/曲面の章/歴史の章/高次元の章など、 232ページ。 本間龍雄監修、『新しいトポロジー 基礎からカタストロフィー理論まで』(ブルーバックス B214)、講談社、1973 トポロジーの国/トポロジーの言葉/不動点定理/トポロジーのものさし/曲面を分類する/曲面と3次元多様体/コピーの世界/いろいろな結び目/高次元の曲面/モースの理論/トポロジーと代数の結婚/カタストロフィーの話/経済学におけるトポロジーなど、 448ページ。 『現代思想』、vol.23-05、1995.5、pp.45-390:「特集 高次元多様体」 形・構造・次元(池田清彦・高木隆司)/高次元とかたち(小川泰)/空間の陰影としての次元問題(金子務)/芸術・科学における空間と次元(デーネシュ・ナジ)/神秘主義、ロマン主義、4次元(リンダ・D・ヘンダーソン)/曲面で考える夢のグラファイト(H.テロンズ+A.L.マッカイ)/4次元人の正体(宮崎興二)/相対性理論と論理実証主義(マイケル・フリードマン)/ダイナミカルシステムにおける次元の概念 その哲学的所見(ジョージ・L・ファー)/有限性世界の活路はどこにあるか 経済を遅くする力学(長沼伸一郎)/江戸時代の数学 高次方程式と「勘」(西田知己)/生物体の構造を考える フラクタル的構造に注目しながら(本多久夫)/他と多の素描(宇野邦一)/都市を4次元で考える(腰塚武志)/影たちの無限(谷口博史)/生成する被膜の作法(図版構成:木本圭子)+噛むことのメタローグ(桂英史)/かくも静穏な場所に……記憶と反復 序論(澤野雅樹)/生命と時間、そして原生-計算と存在論的観測(承前)(郡司ペギオー幸夫)/次元の誕生と変遷(松野孝一郎)/物理学の記述過程と記述空間(小嶋泉+聞き手:沼田寛)/高次元立方体を直観するための、3つの方法。(吉本直貴)/MOVING DIMENSION(戸村浩)/高次元のアーキテクチャー(日詰明男)/カオス的遍歴をめぐって(池田研介・金子邦彦+司会:沼田寛) J.R.ウィークス、三村護・入江晴栄訳、『曲面と3次元多様体を視る 空間の形』、現代数学社、1996 原著は Jeffrey R. Weeks, The Shape of Space. How to Visualize Surfaces and Three-Dimensional Manifolds, 1985 曲面と3次元多様体/曲面上の幾何/3次元多様体上の幾何/宇宙など、 216ページ。
宮崎興二編著、石井源久・山口哲共著、『高次元図形サイエンス』、京都大学学術出版会、2005 図形的な高次元空間/基礎的な高次元図形/高次元図形の投影/高次元図形の回転と切断/正多胞体/準正多胞体と半正多胞体/正規多胞体/いろいろな多胞体/高次元球面/いろいろな超曲面など、 284ページ。 後掲のシュボーン・ロバーツ、『多面体と宇宙の謎に迫った幾何学者』、2009、p.219、pp.419-418の注(59) に宮崎興二が登場します。 その宮崎興二による以下の単著の内、一番上の本を「図像、図形、色彩、音楽、建築など」の頁の「ii. 図形など」の項、後の二冊は同じ頁の「v. 建築など」の項で挙げました; 宮崎興二、『プラトンと五重塔 かたちから見た日本文化史』、人文書院、1987 宮崎興二、『多面体と建築 そのなぞとかたち』、彰国社、1979 宮崎興二、『建築のかたち百科 多角形から超曲面まで』、彰国社、2000 小笠英志、『4次元以上の空間が見える』、ベレ出版、2006 タイムマシンとSF小説/n次元ユークリッド空間 Rn/n次元ユークリッド空間(c =2,3,4,5)の中のS1、S2/n次元球面Sn(n はすべての自然数)/さらにn次元の図形の例 S1×Sn-1(n は2以上の自然数)/ここまでに残した証明の概略/この本を読んだ後の進み方のいくつkなど、 256ページ。 小笠栄志、『宇宙が見える数学 結び目と高次元 - トポロジー入門』(講談社ブルーバックス B-2275)、講談社、2024 まえがき// 序章 宇宙をまっすぐ進んで行くと、どこにたどり着くのか?;平面が空間の中で曲がる/宇宙が曲がるとは?/3次元空間が4次元空間の中で曲がる// 結び目理論 究極物質、世界面;世界面 ワールドシート/弦同士の反応を表す「世界面」/コラム 量子力学 超ミクロの世界を見ると/曲面/メビウスの帯から結び目出現/何回か捻ったアニュラスとメビウスの帯をハサミで切ると// 4次元空間を見るには クラインの壺;クラインの壺/クラインの壺と3次元空間/4次元空間R4/クラインの壺と4次元空間/クラインの壺ができた!/クラインの壺の工作// 4次元立方体 4次元は誰でも見える;正方形、立方体、4次元立方体/4次元立方体の見取り図、射影図/4次元立方体の展開図の作り方// 宇宙の涯ては、どうなっているのか?;宇宙の大きさは有限か無限か/3次元空間R3が4次元空間R4の中で曲がっている/3次元空間R3と2次元球面/4次元空間R4と3次元球面/3次元空間R3でない宇宙モデル/3次元球面と4次元立方体の、とある関係// 曲面は2次元なのに、5次元が必要!?;2次元実射影空間RP2/2次元実射影空間RP2を作るには・ボーイ・サーフェス設計図/2次元の工作から5次元へ// トーイ・モデル 宇宙の改変;トーイ・モデル/ブラックホールに吸い込まれたらどこに行くのか/4次元空間R4に描かれた絵/3次元空間S3を手術する/ワームホール// 宇宙の形の可能性;S1×S2≠3次元球面S3/トポロジー(位相幾何学)/ポアンカレ球面/超弦理論と高次元/ポアンカレ予想はまだ溶けていない!?/ポアンカレ予想とはなにか/一般次元ポアンカレ予想/ポアンカレ予想に挑んだ数学者たち/ポアンカレ予想と宇宙の形// 宇宙の謎を「結び目」がほどく;結び目理論は位相幾何(トポポロジー)の一分野/素粒子、超弦理論の物理を概観すると/ジョーンズのジョーンズ多項式/ウィッテンの「超弦理論・場の量子論と結び目」/トポロジーがたどり着いた「場の量子論」未踏の地// あとがきなど、 222ページ。 根上生也、『トポロジカル宇宙 ポアンカレ予想解決への道 完全版』、日本評論社、2007 初版は1993年。2006年のグレゴリー・ペレルマンによるポアンカレ予想解決を承けて、第6章が追加された。 宇宙の形とは?/丸い宇宙とは?/宇宙儀製造計画/第2期大航海時代/そして、宇宙の果てへ/第2000年紀を迎えて/封印の章など、 220ページ。 シュボーン・ロバーツ、糸川洋訳、『多面体と宇宙の謎に迫った幾何学者』、日経BP社、2009 原著は Siobhan Roberts, King of Infinite Space. Donald Coxeter, the Man Who Saved Geometry, 2006 まえがき ドナルド・コクセターの個人的な思い出(ダグラス・R・ホフスタッター)// 純粋な幾何学;ドナルド・コクセターという人物/ミスター多胞体、ブダペストへ行く/不思議の国の若きドナルド/アリスおばさんとケンブリッジの回廊/プリンストンにおける才能の開花と対称性の神々/愛、死とルートヴィヒ・ヴィトゲンシュタイン/三角形に死を!/政治と家庭の価値/ブルバキが著作に図形を入れるまで// 応用;バッキー・フラーと「幾何学のギャップ」の解消/C60、免疫グロブリン、ゼオライト/M.C.エッシャーとの「コクセタリング」/宇宙のコクセター的な形// 余波;対称性に生きた人生// 付録;フィナボッチと葉序/3次元正多胞体および4次元正多胞体のシュレーフリ記号/コクセター図形/コクセター群/モーリーの奇跡/フリーマン・ダイソンの「流行らない学問」/結晶学とペンローズのトイレットペーパー/コクセターの数学出版物など、 512ページ。
新海裕美子、ハインツ・ホライス、矢沢潔、『次元とはなにか 0次元から始めて多次元、余剰次元まで、空間と時空の謎に迫る!!』(サイエンス・アイ新書 SIS-203)、ソフトバンク クリエイティブ株式会社、2011 0次元から1次元の世界へ/2次元の世界/3次元の世界/3次元から4次元時空へ/姿を現した5次元空間/ひも理論と多次元宇宙/人間はブレーン宇宙の住人?/あとがきとしての終章など、 224ページ。
P.R.クロムウェル、下川航也・平澤美可三・松本三郎・丸本嘉彦・村上斉訳、『多面体』、シュプリンガー・フェアラーク東京、2001 原著は Peter R. Cromwell, Polyhedra, 1997 はじめに;建造物における多面体/美術における多面体/装飾品における多面体/自然界における多面体/地図作成法における多面体/哲学や文学における多面体/この本について/証明について/この本の読み方/基本的な概念/模型を作る// 分割できないもの、表現できないもの、避けられないもの;永遠の城/エジプトの幾何学/バビロニアの幾何学/中国の幾何学/東洋の数学の共通の起源/ギリシャの数学と整数の比では表されないものの発見/空間の本質/デモクリトスのジレンマ/角錐の体積に関する劉徴の著述/エウドクソスによる取り尽くしの方法/ヒルベルトの第3問題// 規則と正則性;プラトン立体/数学のパラダイム/抽象化/根源的対象と証明のない定理/存在問題/プラトン立体の作図/正多面体の発見/正則性とは何か?/規則の修正/アルキメデス立体/正多角形の面を持つ多面体// 多面体幾何の衰退と復活;アレキサンドリア人/数学と天文学/アレキサンドリアのヘロン/アレキサンドリアのパップス/プラトンの遺産/幾何の衰え/イスラム教の発展/サービト・ブン・クッラ/アブー・アルワファー/ヨーロッパ、古典を再発見/光学/カンパヌスの球面/古典の収集と普及/原論の復活/物の新しい見方/遠近法/初期の遠近法の画家/レオン・バティスタ・アルベルティ/パオロ・ウッチェロ/木工作品での多面体(→こちらも参照:フラ・ジョヴァンニ・ダ・ヴェローナ《典礼器具、本、多面体のある戸棚》(1518-23)の頁)/ピエロ・デラ・フランチェスカ/ルカ・パチョーリ/アルブレヒト・デューラー/ヴェンツェル・ヤムニッツァー/遠近法と天文学/多面体の復活// 幻想性、調和性、一様性;ケプラーの生涯/解かれた謎/宇宙の構造/いろいろな形の貼り合わせ/菱形多面体/アルキメデス立体/星型多角形と星型多面体/半立体的多面体/一様多面体// 曲面、立体、球面;平面角、立体角、およびその測り方/デカルトの公理/オイラーの公式の発見/構成要素に名前をつける/オイラーの公式から導かれるもの/オイラーによる証明/ルジャンドルによる証明/コーシーによる証明/公式の正当性を示す例外/多面体とは何か?/フォン・シュタウトによる証明/補足的な観点/ガウスーボンネの定理// 相等性、剛体性、柔構造;論争された基盤/立体異性体と合同/コーシーの剛体性定理/コーシーの初期の経歴/シュタイニッツの補題/回転するリングと、柔軟な枠/すべての多面体が剛体的なのか?/コネリーの球面/さらなる展開/2つの多面体はいつ相等になるか?// 星型多角形、星型多面体と骨格多面体;一般化された多角形/ポアンソの星型多面体/ポアンソの予想/ケーリーの式/星型多面体に関するコーシーの数え上げ/面の星状化/二十面体の星型/バートランドによる星型多面体の数え上げ/正則骨格// 対称性、形と構造;対称性とは何を意味するのであろうか?/回転対称/回転対称系/どれだけの回転対称系があるのだろうか?/鏡映対称/角柱的対称型/複合的対称とS2n対称型/立方体的対称型/二十面体型対称性/正しい対称型の決定/対称性の群/結晶学と対称性の発展// 色を塗る、数え上げる、計算で求める;プラトン立体に色を塗る/塗り方は何通りあるか?/数え上げ定理/数え上げ定理の応用/厳密な彩色/何色必要か/4色問題/証明するとはどういうことか// 組み合わせる、変形する、飾り付ける;対称的な複合多面体を作る/対称性の崩壊、対称性の補完/どの複合多面体が正則か?/正則性と対称性/推移性/多面体の変形/頂点に関して推移的な凸多面体のなす空間/全推移的な多面体/対称的な彩色/彩色対称変換/完璧な彩色/5次方程式の解法// 付録;Ⅰ/Ⅱなど、 456ページ。 →こちら(「寄木細工、透視画法、マッツォッキオ、留守模様」の頁や、またそちら(「『Meigaを探せ!』より、他」中の『K-20 怪人二十面相・伝』(2008)の頁)でも触れました また; デヴィッド・ウェイド、宮崎興二編訳、『ルネサンスの多面体百科』、2018 David Wade, Geometry & Art. How Mathematics transformed Art during the Renaissance, 2017 Noam Andrews, The Polyhedrists. Art and Geometry in the Long Sixteenth Century, 2022 次元に関しては、上掲『フラットランド』の系譜、ルーディ・ラッカーの他、 →「ロマン主義、近代など(18世紀末~19世紀)」の頁の「ウェルズ(1866-1946)」の項や、同頁「xiii. ロマン主義、象徴主義の周辺など」から 高橋理樹、「隣接する科学とフィクション - 19世紀イギリスにおける四次元論の展開 -」、2007、 「近代など(20世紀~) Ⅲ」の頁の「xii. ロシアから」中の「ウスペンスキー(1878-1948)」の項、 また→こちら(同頁の「xvi. 20世紀神秘学の歴史など」中の向山毅、リンダ・D・ヘンダーソンの論文・著書)、およびこちらの2(同頁同項のブラグドンのところ) なども参照 |
||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
vii. クルト・ゲーデル(1906-1978)など 上掲のルーディ・ラッカーの『かくれた世界 幾何学・4次元・相対性』(1981)と『4次元の冒険 幾何学・宇宙・想像力』(1989)でラッカーの考える無時間宇宙=〈ブロック宇宙〉のモデルとされるのがゲーデルの宇宙論です。同『無限と心』(1986)の第4章(1)と(2)およびエクスカーションⅡも参照。 ゲーデルについては不完全性定理をめぐっていろいろあるものと思われますが、とりあえず; パレ・ユアグロー、林一訳、『時間のない宇宙 ゲーデルとアインシュタインの最後の思索』、白揚社、2006 原著は Palle Yourgrau, A World without Time. The Forgotten Legacy of Gödel and Einstein, 2005 申し合わせた沈黙/形而上学に対するドイツ的偏向/ウィーン-論理サークル/論理学の館に潜むスパイ/ウィーンを離れるのは辛い/半神半人に混じって/神々の黄昏/ゲーデル(あるいは多の誰でも)はどの程度哲学者か?など、 288ページ。
高橋昌一郎、『ゲーデルの哲学 不完全性定理と神の存在論』(講談社現代新書 1466)、講談社、1999 不完全性定理のイメージ;真理と証明/不完全性定理と万能システム/自己言及と自意識// 完全性定理と不完全性定理;ウィーン時代のゲーデル/ウィーン学団とヒルベルト・プログラム/不完全性定理の反響// 不完全性定理の哲学的帰結;プリンストン時代のゲーデル/ギブス講演/数学的実在論// ゲーデルの神の存在論;晩年のゲーデル/ゲーデルの遺稿/神の存在論的証明// 不完全性定理と理性の限界;不完全性・非決定性・停止定理/人間機械論争/真理のランダム性と神の非存在論など、 256ページ。 ダグラス・R・ホフスタッター、野崎昭弘・はやしはじめ・柳瀬尚紀訳、『ゲーデル、エッシャー、バッハ あるいは不思議の環』、白揚社、1985 原著は Douglas R. Hofstadter, Gödel, Escher, Bach. An Eternal Golden Braid, 1979 GEB;序論 音楽=論理学の捧げもの *3声の EGB;*前奏曲 記述のレベルとコンピュータ・システム *フーガの蟻法/脳と思考 *英仏独日組曲/心と思考 *アリアとさまざまの変奏/ブーとフーとグー *G線上のアリア/形式的に決定不可能なTNTと関連するシステムの命題 *誕生日のカンターターターター/システムからの脱出 *パイプ愛好者の教訓的思索/自己言及と自己増殖 *マニフィ蟹ト、ほんまニ調/チャーチ、チューリング、タルスキ、その他 *SHRDLUよ、人の巧みの慰みよ/人。工知能=回顧 *コントラファクトゥス/人工知能=展望 *樹懶のカノン/不思議の環、あるいはもつれた階層 *6声のリチェルカーレなど、 768ページ。 吉永良正、『ゲーデル・不完全性定理 "理性の限界"の発見』(ブルーバックス B947)、講談社、1992 プロローグ "理性の迷宮"への招待// "数学の危機"がゲーデルを求めた;無限と何か?/集合とは何か?/真理とは何か?/数学とは何か?// 「不完全性定理」とは何か?;証明と何か?/理性とは何か?/天才とは何か?// エピローグ "理性の限界"からの出発など、 296ページ。 |
||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||
viii. 無限、その他 数学関係の本は山ほどありますが、いかんせん頭の回路がついていってくれないので、とりあえず手元にあるものということで; 川尻信夫、『「集合」の話』(講談社現代新書 286)、講談社、1972 序章 無限の算術/集合の考え方/写像と論理/「数える」ということ/カントルの集合論/集合と現代数学など、 226ページ。 小野勝次、『時空と連続 つぎはぎだらけの世界像』(ブルーバックス B229)、講談社、1974 つぎはぎだらけの世界像;野球の審判/芋虫と蝶/双生児/成長/割り符/垣間見る世界/つぎはぎだらけの世界像// 流転の舞台;位置の変化/浦島太郎物語/時の流れ/奇妙な統制/すっかり変わった都会/流転を眺める/絶対空間への夢// 舞台の枠組み;時の刻み/世界を見る/「いつ・どこで?」/10進数ではかる/10進数の順序付け/割り込みの余地// 連続と断絶;連続的とは?/直前の予想/極限と連続/爆発・衝突/断絶は連続寄り/断絶へのアプローチ/宇宙の外など、 192ページ。 『エピステーメー』、vol.2 no.10、1976.11、pp.7-140:「特集 数学の美学」 ピュタゴラスの数学(M.P.ホール)/ガリポリあるいは数の神秘主義(G.R.ホッケ)/〈数〉の比較神話学(吉田敦彦)/プラトンの対話と抽象化の間主観的な発生(M.セール)/易経における時間概念(H.ウィルヘルム)/数学的自然科学の成立 ガリレイ・ケプラー・ニュートン(E.ブロッホ)/アナロギアの論理 イデア論と比例形式(五十嵐一)/数、夢、言語そして詩(E.シュウェル)/もつれっ話(L.キャロル)/45元の魔界 ある「銀河鉄道」論における確率論的難点を論じて、そば屋の品書きの宇宙的照応性に及ぶ(入沢康夫)/脳の力学系とカタストロフィー ジーマンの論文予稿から(野口広) 同号は松山俊太郎「古代インド人の宇宙像 Ⅲ」も所収(pp.166-183) 小島寛之、『数学迷宮 メタファーの花園に咲いた1輪のあじさいとしての数学』、新評論、1991 SF 異界からインサイド・ルッキングアウト/アキレスは今でも亀を追いかけ続けている/数学夜話 存在の耐えられない重さ/無限が牙をむくとき-カントールの集合論へのレクイエム/啓蒙書フリークによる〝迷宮〟ブックガイドなど、 280ページ。 足立恒雄、『無限の果てに何があるか 現代数学への招待』(Kappa Science 5-72)、光文社、1992 プロローグ 「異文化」への招待状// 虚数とは何か;存在と非存在の両生類/虚数の誕生/虚数がひらいた世界/虚数よりも不可解な実数// 三角形の内角の和はホントに2直角か;「大地」の幾何学/非ユークリッドの幾何学の世界像/モデルと現実/「意味」からの脱却// 1+1はなぜ2なのか;数学における「真理」とは/「集合」の威力/記号で「論理」を表現する/0からの出発/けっきょく、1+1とは何か// 無限とは何か;「実無限」と「仮無限」/「極限」という名の仮無限/「集合」という名の実無限/自分の正しさは、自分では証明できない、など、 252ページ。 新井朝雄、『ヒルベルト空間と量子力学 共立講座 21世紀の数学 16』、共立出版株式会社、1997 ヒルベルト空間/ヒルベルト空間上の線形作用素/作用素解析とスペクトル定理/自己共役作用素の解析/偏微分作用素の本質的自己共役性とスペクトル/量子力学の数学的原理/量子調和振動子// 付録;ルベーグ積分論における基本定理/確率論の基本的事項など、 286ページ。 →こちら(「近代など(20世紀~)」の頁のショーン・キャロル、塩原通緒訳、『量子力学の奥深くに隠されているもの』(2020)のところ)や、またあちらでも挙げました:「近代など(20世紀~) Ⅲ」の頁の「ホワイトヘッド」の項中 アミール・D・アクゼル、青木薫訳、『「無限」に魅入られた天才数学者たち』、早川書房、2002 原著は Amir D. Aczel, The Mystery of the Aleph. Mathematics, the Kabbalah, and the Search for Infinity, 2000 ハレ/無限の発見/カバラ/ガリレオとボルツァーノ/ベルリン/円積問題/学生時代/集合論の誕生/最初の円/「我見るも、我信ぜず」/悪意に満ちた妨害/超限数/連続体仮説/シェイクスピアと心の病/選択公理/ラッセルのパラドックス/マリエンバート/ウィーンのカフェ/1937年6月14日から15日にかけての夜/ライプニッツ、相対性理論、アメリカ合衆国憲法/コーエンの証明と集合論の未来/ハルクの無限の輝き/付録 集合論の公理など、 258ページ。 本書の主役はカントール(1845-1918)です。 同じ著者による→こちらを参照(「近代など(20世紀~)」の頁/」『相対論がもたらした時空の奇妙な幾何学 アインシュタインと膨張する宇宙』、2002) また→そちらにも挙げておきます:カバラーがらみで「ユダヤ Ⅲ」の頁の「xvii. 応用篇など」 チャールズ・サイフェ、林大訳、『異端の数 ゼロ 数学・物理学が恐れるもっとも危険な概念』、早川書房、2003 原著は Charles Seife, Zero, 2000 第0章 ゼロと無/無理な話 - ゼロの起源/無からは何も生まれない - 西洋はゼロを拒絶する/ゼロ、東に向かう/無限なる、無の神 - ゼロの神学/無限のゼロと無信仰の数学者 - ゼロと科学革命/無限の双子 - ゼロの無限の本性/絶対的なゼロ-ゼロの物理学/グラウンド・ゼロのゼロ時 - 空間と時間の端にあるゼロ/第∞章 ゼロの最終的勝利/付録A~Eなど、 270ページ。 イーヴァル・エクランド、南條郁子訳、『数学は最善世界の夢を見るか? 最小作用の原理から最適化理論へ』、みすず書房、2009、「第3章 最小作用の原理」 原著は Ivar Ekeland, Le meilleur des mondes possibles. Mathématiques et destinée, 2000 とその英語版 The Best of All Possible Worlds, 2006 で、双方を活かす形で編集された訳本(pp.295-297) 他の章は; 時を刻む/近代科学の誕生/計算から幾何へ/ポアンカレとその向こう/パンドラの箱/最善者が勝つのか?/自然の終焉/共通善/個人的な結論//附録;凸形ビリヤード台の短い直径を求める/一般系に対する停留作用の原理/運動の幾何学など、 382ページ。 邦題から予想されるライプニッツについては第2章で、影の主役と言うべきモーペルテュイについては第3章で取りあげられています。 レナード・M・ワプナー、佐藤かおり・佐藤宏樹訳、『バナッハ=タルスキの逆説 豆と太陽は同じ大きさ?』、青土社、2009 原著は Leonard M. Wapner, The Pea and the Sun. A Mathematical Paradox, 2005 歴史-登場人物/ジグソーパラドックスと不思議なパズル/準備/赤ん坊のBTたち/定理の証明/パラドックスの解明/実世界/過去から未来へ、など、 288ページ。
B.マンデルブロ、広中平祐監訳、『フラクタル幾何学』(上下)(ちくま学芸文庫 マ 34-1/2)、筑摩書房、2011 原著は Benoit Mandelbrot, The Fractal Geometry of Nature, 1975/1977/1982/1983 邦訳は1985年刊本の文庫化 上;序/3つの古典的フラクタル/銀河と渦/測層フラクタル/非測層フラクタル/自己写像フラクタル/ランダム性/層化ランダムフラクタルなど、 532ページ。 下;カラーで見るもう1冊のフラクタルの本/ランダムトレマ:テクスチャー/雑記/思想と群像/第2版に際しての新規追補など、 532ページ。 フィッシュ、『巨大数論 第2版』、インプレスR&D 著者向けPOD出版サービス、2013/2017 はじめに// 巨大数入門;クラス2の巨大数/クラス3の巨大数/クラス4の巨大数/クラス5以上の巨大数/巨大数に関する参考資料// 原始再帰関数;クヌースの矢印表記/グッドスタイン数列/原始再帰関数// 2重再帰関数;アッカーマン関数/2重再帰関数/モーザー数/グラハム数/コンウェイのチェーン表記// 多重再帰関数;多変数アッカーマン関数/多重再帰に見えてそうでない関数/拡張チェーン表記/ふぃっしゅ数/バード数から配列表記へ// 順序数;順序数/順序数階層/順序数解析// ペアノ算術の限界;F[∊0](n)の計算/ドル関数の角括弧表記/ふぃっしゅ数バージョン5/ヒドラゲーム/原始数列数/多重リストアッカーマン関数/バードのネスト配列表記/BEAF のテトレーション配列/巨大数生成プログラム・・ 再帰関数;ヴェブレン関数/順序数崩壊関数/2階算術/様々な巨大数と関数// 計算不可能な関数;ビジービーバー関数/神託機械/クサイ関数/ふぃっしゅ数バージョン4/ラヨ数/ふぃっしゅ数バージョン7/ビッグフット/サスクワッチ// おわりに/巨大数年表など、 268ページ。 鈴木真治、『巨大数 岩波科学ライブラリー 253』、岩波書店、2016 はじめに - 有限と無限の狭間を揺らぐ不思議な存在// 歴史に見る巨大数 - 宇宙の砂の数、極楽浄土までの道のり;アルキメデスの3つの巨大数/古代バビロニアやユダヤの巨大数/仏教やジャイナ教に現れた巨大数// 自然科学と巨大数 - 「天文学的」を超える「天文学的」な数;アボガドロ定数/エディントン数とディラックの巨大数仮説/永劫回帰時間/猿の無限定理/指数表記の発明// 数学と巨大数 - 無限の一歩、手前;数学に現れた巨大数/巨大数を生み出す関数/チャレンジコーナー/巨大数の数学的小品// 付録;巨大数関連略年表(~1995)/順序数/急増加関数// あとがきなど、 128ページ。 第1章1「アルキメデスの3つの巨大数」で扱われるアルキメデスの論文「砂の計算者」に関連して、すぐ上のフィッシュ『巨大数論 第2版』(2013/2017)、およびすぐ下の『現代思想』特集号中の同じ著者による「歴史的に観た巨大数の位置づけ」および斎藤憲「古代ギリシャの(巨大)数」ともども →こちら:「ギリシア・ヘレニズム・ローマ Ⅱ」の頁の「xi. 天文学、占星術など」で、 第1章3「仏教やジャイナ教に現れた巨大数」等に関連して、やはりフィッシュ『巨大数論 第2版』(2013/2017)、「歴史的に観た巨大数の位置づけ」および同じ『現代思想』特集から師茂樹「巨大数の経験」および小川束「仏教経典と『塵劫記』とにおける巨大数の心性試論」ともども、 →そちらにも挙げました:「仏教」の頁の「i. 須弥山/三千大千世界/四大劫・六十四転大劫」、また同じ項中の松山俊太郎「インドの回帰的終末説」(1982)のところで、 第2章3「永劫回帰時間」で扱われる〈ポアンカレの回帰定理〉に関連して、三度「歴史的に観た巨大数の位置づけ」ともども →あちら:「近代など(20世紀~)」の頁のケイティ・マック、吉田三知世訳、『宇宙の終わりに何が起こるのか』(2021)のところ、および →あちらの2(「ロマン主義、近代など(18世紀末~19世紀)」の頁、「xi. 個々の著述家など Ⅴ」中の「ニーチェ」の項で挙げておきました。 『現代思想』、vol.47-15、2019.12、pp.7-208:「特集 巨大数の世界 アルキメデスからグーゴロジーまで」 討議 有限と無限のせめぎあう場所(鈴木真治、フィッシュ)// 現代数学とグーゴロジー;巨大数論発展の軌跡(フィッシュ)/無限の名を呼ぶ 巨大関数をとりまく数学小史(木原貴行)/無限と連続の数学(藤田博司)/巨大基数と巨大な巨大基数、超数学での無限と集合論的無限、それらに対する有限の諸相(渕野昌)/大きな有限の中に現れる構造をめぐって(徳重典英)// (寿司虚空編)(小林銅蟲)// 大いなる数の人類史;歴史的に観た巨大数の位置づけ(鈴木真治)/古代ギリシャの(巨大)数(斎藤憲)/巨大数の経験(師茂樹)/仏教経典と『塵劫記』とにおける巨大数の心性試論(小川束)// 社会、世界、そして宇宙;情報社会にとって「数」とは何か?(大黒岳彦)/巨大な素数は世界をどう変えるか(小島寛之)// TAKUN SENSE OF WONDER 512(古川タク)// 社会、世界、そして宇宙(承前);宇宙における巨大数と物理の視点(小林晋平)// 涯しないもののための哲学;かぞえかたのわからない巨大数は存在しないのか(近藤和敬)/永遠について 現在の観点から(佐金武)// 巨大な数に〈ふれる〉ということ;感性的対象としての数 カント、宮島達男、池田亮司(星野太)// スパゲッティ・カレーライス(詩野うら)// 巨大な数に〈ふれる〉ということ(承前);一〇兆と五〇〇億のあいだ ジンバブエのハイパー・インフレ通貨と巨大数(早川真悠) 藤田博司「無限と連続の数学」から→「世界の複数性など」の頁の「追記」で引きました。 佐金武、「永遠について 現在の観点から」を→そちらでも挙げました:「近代など(20世紀~)」の頁のカルロ・ロヴェッリ、冨永星訳、『時間は存在しない』、(2019)のところ。 鈴木真治の「歴史的に観た巨大数の位置づけ」(pp.86-87)および上掲『巨大数 岩波科学ライブラリー 253』(2016、p.22)で引用されていたのが; B.ボロバシュ編、金光滋訳、『リトルウッドの数学スクランブル』、近代科学社、1990、pp.141-159:「第10章 大きな数」 原著は Edited by Béla Bollobás, Littlewood's Miscellany, 1986 全体の目次は; まえがき(ベラ・ボロバシュ)/はじめに(同)// 『数学雑談』序文/衣の下控え目の数学/数学優等試験から/頓珍漢問答(クロス・パーパス)、無意識のうちにする仮定、大間違い、ミスプリント、その他/数学動物園/弾道学/確率論のジレンマ/フェルマーの大定理から死刑廃止論まで/ある数学教育/ラマヌジャン論文集評/大きな数/ライオン VS. ヒト/学究(級?)生活/我楽多文庫/ニュートンと球の引力/海王星の発見/アダムズ-エアリイ事件/数学者の仕事法// 訳者(前後不)覚書など、 298ページ。 件の引用箇所はやはり→こちらに挙げました:「仏教」の頁の「i. 須弥山/三千大千世界/四大劫・六十四転大劫」、また同じ項中の松山俊太郎「インドの回帰的終末説」(1982)のところ 西来路文朗・清水健一、『有限の中の無限 素数がつくる有限体のふしぎ』(ブルーバックス B-2137)、講談社、2020 プロローグ/はじめに// 1+1=0 の世界 - 素数のふしぎなはたらき;ふしぎな国のふしぎな計算/四則演算からの風景/0と1の幾何学/美しい平方数の世界/方程式からの眺望/平方数を超えて/「有限個の数の世界」と「ふつうの数の世界」// ガロアが創った新しい世界 - 数の進化を考える;ガロアの虚数/p乗の魔法/有限体上の楕円曲線// エピローグなど、 240ページ。 岡本健太郎、『アートで魅せる数学の世界』、技術評論社、2021 はじめに// 黄金比の数理;黄金比とは/2次方程式と黄金比の歴史/貴金属比/五芒星と黄金比/黄金比が現れる問題/フィボナッチ数と黄金比/植物と黄金角// 幾何学模様の数理;折り紙の歴史/折り紙と幾何学/折り紙と黄金比/平面折り紙の理論/ミウラ折り/繰り返し模様の歴史/タイリングの数理/エッシャーと数学/非周期タイリング// ストリング・アートの世界;Excel で学ぶストリング・アート入門/螺線のアート/エピサイクロイドとハイポサイクロイド/スピログラフとトロコイド曲線/リサージュ曲線/数列の描くストリング・アート// フラクタルとランダムのアート;フラクタル図形とは/フラクタルの歴史と 数学/パスカルの三角形とフラクタル/ドラゴン曲線/乱数を使った「ランダム・アート」/力学系とカオス・アート// デザイン、アートへの活用例;Excel アートのデザイン活用例/数学と切り絵// 関連図書など、 256ページ。 「近代など(20世紀~)」の頁の「Ⅰ 相対性理論以降の物理学的宇宙論など」で挙げた ジョン・D・バロウ、『無限の話』、2006 ジョン・D・バロウ、『無の本 ゼロ、真空、宇宙の起源』、2013 なども参照。 数学だけを扱うものではありませんが アンリ・ポアンカレ、南條郁子訳、『科学と仮説』(ちくま学芸文庫 ホ 23-1)、筑摩書房、2022 原著は Henri Poincaré, La Science et l'hypothèse, 1902 はじめに// 数と大きさ;数学的推理の本性について/数学的な大きさと実験// 空間;非ユークリッド幾何学/空間と幾何学/実験と幾何学// 力;古典力学/相対運動と絶対運動/エネルギーと熱力学/第3部の全体的結論// 自然;物理学における仮説/近代物理学の理論/確からしさの計算/光学と電気学/電気力学/物質の終わり// 出典// 訳者による解説とあとがき;概要/アインシュタインと友人たち/暗黙の前提/カントの哲学(先験的・後験的、分析判断・総合判断、組み合わせ、矛盾律)/文(☆)の意味/公理の本性/第4章以降/変更箇所について/細かい注意/歴史と参考図書/個人的事情と謝辞// 人名索引/事項索引など、 328ページ。
ポアンカレ、吉田洋一訳、『改訳 科学と方法』(岩波文庫 33-602-2/青 902-2)、岩波書店、1953 原著は Henri Poincaré, Science et méthode, 1908 改版にあたって/譯者序// 緒言// 學者と科學;事實の選擇/數學の將來/數學上の發見/偶然// 數學的推理;空間の相對性/數學上の定義と教育/數學と論理/新しい論理學/數學的論理派最近の努力// 新力學;力學とラヂウム/力學と光學/新力學と天文學// 天文學;銀河と氣體理論/フランスの測地學// 總括// 索引など、 324ページ。 |
||||||||||||||||||||||||||||||||
おまけ 〈マス・ロック math rock 〉なる分類枠があるそうです。 "math" は "mathematical" の略とのことで、→こちら(「日本 Ⅱ」の頁の「おまけ」)で触れた、 Don Caballero, Don Caballero 2, 1995(1) くらいしか聞いたことがないのですが* - 日本のバンド Clean of Core (2009, 2010) は結びつけてよいのでしょうか? -、〈数学的〉がどんなことを表わすのかも含めて、 Theo Cateforis, "How Alternative Turned Progressive. The Strange Case of Math Rock", edited by Kevin Holm-Hudson, Progressive Rock Reconsidered, Routldge, New York & London, 2002, chapter 11 (pp.243-260) を参照ください。上掲のアルバムから1曲目、"Stupid Puma" におけるリズムの変化・パターンが具体的に分析されています。 |
1. 金子厚武監修、『ポストロック・ディスク・ガイド』、2015、p.86。 * 追補:「特集 ムーンライダーズの30年」が掲載された『ミュージック・マガジン』2006年6月号を引っぱりだしてパラパラ繰っていたら、「Random Notes」のコーナーに、半頁の手短な紹介ではありますが「マス・ロック [Math Rock]」という記事がありました(p.82、筆者:広川裕)。 「さらに大きく遡ってフランク・ザッパ、キャプテン・ビーフハート、70年代プログレのジェントル・ジャイアント、キング・クリムゾン、ヘンリー・カウ辺りにまでオリジンを求める例もある」 とあって、気にはなったのでしょう、頁の角を折ってありました。とはいえ糸をたぐるにはいたらず、きれいさっぱり忘れていたのはいうまでもありません。 |
|||||||||||||||||||||||||||||||
(追補 その後次のアルバムを聴く機会がありました; Don Caballero, American Don, 2000(邦題:ドン・キャバレロ、『アメリカン・ドン』(1)に同じ) こちらは4枚目。エレクトリック・ギターの音色からひずみが排され、その分輪郭がくっきり耳に入るようになりました)。 また註1に挙げた本の pp.84-85 が 天井潤之介「Math-Rock 複雑巧遅な数学的アンサンブル、そこから広がるユニークな音楽地図」 で、手短ながら概括、続く pp.86-91 が代表的なアルバムの紹介となっています。ただしマス・ロックに分類されるアルバムは同書の他の箇所にも散らばっているようです。その内、日本のバンド |
||||||||||||||||||||||||||||||||
PARA, X-GAME, 2006(2) は〈マス・ロック〉に含めていいのかどうか、ともあれ註2の箇所の解説によると、 「『数学的構築性に基づく室内楽的グルーヴの追及』をコンセプトに」 しているとのことです。 |
2. 金子厚武監修、『ポストロック・ディスク・ガイド』、2015、p.180。 同じアルバムから→そちら(「エジプト」の頁の「おまけ」)や、またあちら(「図像、図形、色彩、音楽、建築など」の頁の「おまけ」)でも挙げました。 |
|||||||||||||||||||||||||||||||
戻ってドン・キャバレロの4枚目 American Don (2000)までギタリストだったイアン・ウィリアムスが後に参加したバトルスは→ここに挙げました:「マネ作《フォリー・ベルジェールのバー》と絵の中の鏡」の頁の「おまけ」 |
||||||||||||||||||||||||||||||||
さらに、〈マス〉+〈ポスト・ハード・コア〉で〈マスコア mathcore 〉なる分類枠もあるそうです。日本語版ウィキペディアの該当頁は→そこ。そこに挙がっているバンドでは、今のところザ・ディリンジャー・エスケイプ・プラン The Dillinger Escape Plan (3)の、ケーブルTVで放映された2017年のライヴ映像しか見たことがありません (同じくケーブルTVで2018年のライヴが放映された、アット・ザ・ドライヴイン At the Drive-in (4)はまた別の範疇になるのでしょうか?) |
3. Cf., 鈴木喜之監修、『アメリカン・オルタナティヴ・ロック特選ガイド』(CDジャーナル・ムック)、音楽出版社、2009、p.79。 4. Cf., 同上、p.133。 |
|||||||||||||||||||||||||||||||
PsysEx, Polyrhythm_system Exclusive Message iii, 2005 帯の謳い文句に、 「エレクトロニカとファンクの融合」 とありました。「京都在住の PsysEx(サイセクス)こと Ken'ichi Itoi」による3枚目。 時たま見かける〈アブストラクト〉という形容は当てはまるのでしょうか、旋律らしきものはほとんどなく、しかしリズムはあります。当方には判別できる耳はありませんが、アルバム・タイトルにあるとおりポリリズムなのでしょう。情緒を排した、ただ聴きようによっては諧謔味をたたえつつ、カクカクと折れ曲がるさまは、〈幾何学的〉と呼びたくなるところです。 他方、実際に幾何学的なのかどうかは知らず、以前から幾何学的という形容を当てはめたくなるような印象を何となく受けていたのが、 Starcastle, Fountains of Light (1977、邦題;スター・キャッスル『神秘の妖精』、→こちらでも触れました:「エジプト」の頁の「おまけ」) です。何らかの情動のうねりに牽引されるわけでもなく、リズムによって前へ前へと駆られていくわけでもない。全体で音の大きな塊をなすこともない。一つ一つのフレーズをその場その場、その時点その時点で丁寧に置いていく。模範とされたイエスとは異なる、ある意味での線の細さゆえかえって、各フレーズの輪郭がはっきり区分けされながら連なっては重なり、紋様よろしく編みこまれていく。そんなさまが、幾何学的と感じられたのでしょうか。 |
||||||||||||||||||||||||||||||||
話は換わってフィンランドから Pekka Pohjola, The Mathematician's Air Display, 1977(5) ウィグワムに参加していたこともあるというベーシストのソロ3枚目。手もとにあるのは英語版で、原題は Keesojen Lehto。ともあれ英語版タイトル曲が3曲目で、もとのLPではA面後半だったのでしょう。7分14秒、器楽曲。 ところで "Air Display" とは何なのでしょうか? |
5. 片山伸監修、『ユーロ・プログレッシヴ・ロック The DIG Presents Disc Guide Series #018』、シンコーミュージック、2004、p.104。 『ユーロ・ロック・プレス』、vol.35、2007.11、p.94。 Cf., 『ユーロ・ロック・プレス』、vol.9、2001.5、pp.89-90。 |
|||||||||||||||||||||||||||||||
本人と共同プロデュースしているマイク・オールドフィールドが全5曲中4曲で演奏に参加しています。音の方もマイク・オールドフィールドに通じる牧歌的なシンフォニック・ロックと呼んでいいでしょうか。 やはりオールドフィールドとつながりがある、ゴングの Pierre Moerlen が本曲も含めドラムス等で4曲に参加、またサリー・オールドフィールドが歌詞なしのヴォーカルで2曲に参加しています。 |
||||||||||||||||||||||||||||||||
News from Babel, Sirens and Silences / Work Resumed on the Tower, 1984(6) 1枚目の Sirens and Silences と題されたA面の3曲目が"Klein's Bottle"、3分17秒(手もとのあるのは2枚目 Letters Home (1986) と合わせた版)。 |
6.『オール・アバウト・チェンバー・ロック&アヴァンギャルド・ミュージック』、マーキー・インコーポレイティド株式会社、2014、p.34。 同じアルバムから→こちら(「メソポタミア」の頁の「おまけ」)や、そちら(「ギリシア、ローマなど Ⅱ」の頁の「おまけ」)を参照 また→あちらも参照:「近代など(20世紀~ )」の頁の「おまけ」 |
|||||||||||||||||||||||||||||||
戸川純、『好き好き大好き』、1985 B面1曲目が「図形の恋」、3分41秒。 この曲以外に、図形にまつわる音楽類は、→「図像、図形、色彩、音楽、建築など」の頁の「おまけ」にも挙げています。 Kate Bush, Aerial, 2005(邦題:ケイト・ブッシュ『エアリアル』) 8枚目、二枚組の Disc 1: A Sea of Honey の2曲目が“π”(「π~円周率」)、6分9秒。 ちなみに Disc 2: A Sky of Honey には"An Architect's Dream"(「建築家の夢」、3曲目、4分50秒)とか"The Painter's Link"(「ペインターズ・リンク」、4曲目、1分35秒)なんて曲も収められています。 →こちらも参照:「エジプト」の頁の「おまけ」 GO!GO!7188、『 鹿児島出身の三人組、その3枚目の8曲目が「無限大」、4分7秒。 同じバンドによる→こちら(「中国 Ⅱ」の頁の「おまけ」)を参照 例によってすっかり忘れていましたが、本頁上掲のレナード・M・ワプナーの本の邦題(→こちら)にもなった〈バナッハ=タルスキの逆説〉を副題にしているのが; 周木律、『伽藍堂の殺人 ~ Banach-Tarski Paradox ~』(講談社文庫 し 111-4)、講談社、2017 2014年刊本の文庫化 〝堂〟シリーズの第4作に当たります。並べておけば; 『眼球堂の殺人 ~ The Book ~』(講談社文庫 し 111-1)、講談社、2016(←2013) 『双孔堂の殺人 ~ Double Torus ~』(講談社文庫 し 111-2)、講談社、2016(←2013) 『五覚堂の殺人 ~ Burning Ship ~』(講談社文庫 し 111-3)、講談社、2017(←2014) 続いて; 『教会堂の殺人 ~ Game Theory ~』(講談社ノベルス シN-05)、講談社、2015 『鏡面堂の殺人 ~ Theory of Relativity ~』(講談社文庫 し 111-6)、講談社、2018 『大聖堂の殺人 ~ The Books ~』(講談社文庫 し 111-7)、講談社、2019 以上で完結。〝堂〟シリーズというだけあって、各タイトルにもなっている建物が重要な役割を果たすのですが、同時に、数学ネタもしばしばからんできます。第1作『眼球堂の殺人』文庫版の千街晶之による「解説」で、手短かではあれ、数学者が登場するこれまでの本格推理小説が概観されていますので、ご参照ください。 数学がらみの映画から; 『π』、1998、監督:ダーレン・アロノフスキー カバラーの話も出てきます。 |
||||||||||||||||||||||||||||||||
2014/05/04 以後、随時修正・追補 | ||||||||||||||||||||||||||||||||
> 近代など Ⅲ 哲学系、神秘学系のものなど |
HOME > 宇宙論の歴史、孫引きガイド > 近代など(20世紀~) > 近代など Ⅱ |